
Journal of Computational Physics 176, 70–92 (2002)

doi:10.1006/jcph.2001.6968, available online at http://www.idealibrary.com on

2D Simulation of a Silicon MESFET with a
Nonparabolic Hydrodynamical Model Based

on the Maximum Entropy Principle

Vittorio Romano

Dipartimento di Matematica e Informatica, Universitá di Catania, viale A. Doria 6, 95125 Catania, Italy
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A hydrodynamical model for electron transport in silicon semiconductors, which
is free of any fitting parameters, has been formulated on the basis of the maxi-
mum entropy principle. The model considers the energy band to be described by
the Kane dispersion relation and includes electron–nonpolar optical phonon and
electron–acoustic phonon scattering. The set of balance equations of the model
forms a quasilinear hyperbolic system and for its numerical integration a recent
high-order shock-capturing central differencing scheme has been employed. Simu-
lations of an n+–n–n+ silicon diode have been presented and comparison with Monte
Carlo data shows the good accuracy of the model and performance of the numerical
scheme. Here the results of simulations of a silicon MESFET in the two-dimensional
case are presented. Both the model and the numerical scheme demonstrate their
accuracy and efficiency as CAD tools for modeling realistic submicron electron
devices. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Modeling modern submicron electron devices requires an accurate description of charge
transport in order to cope with high-field phenomena that cannot be described satisfactorily
within the framework of the drift–diffusion equations [10–12] since these do not include
energy as a dynamical variable and are valid only in the quasi-stationary limit. General-
izations of the drift–diffusion equations have been sought which do not suffer from these
shortcomings. These models are loosely termed hydrodynamical models, this class com-
prising also the so-called energy models [13–15]. Hydrodynamical models are obtained
from the infinite hierarchy of the moment equations of the Boltzmann transport equation
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using a suitable truncation procedure. However, most hydrodynamical models suffer from
serious theoretical drawbacks due to the ad hoc treatment of the closure problem [19]. Re-
cently in [1, 2] a moment approach has been introduced in which the closure procedure is
based on the maximum entropy principle, while the energy bands are described by the Kane
dispersion relation. The resulting model, which can be cast in the framework of extended
thermodynamics [16, 17] or equivalently of Levermore’s moment theory [18], comprises
balance equations of electron density, energy density, velocity, and energy flux, coupled
to the Poisson equation for the electric potential. The presence of a balance equation for
energy flux is at variance with the standard hydrodynamical models usually employed,
which are based on Navier–Stokes–Fourier like equations [20, 21]. Moreover, apart from
the Poisson equation, the system is hyperbolic in the physically relevant region of the field
variables.

A numerical scheme for problems of this kind based on central differencing has been
developed in [5, 6, 22] for the one-dimensional case and applied in [7, 9] to bulk silicon
and to an n+–n–n+ silicon diode (for the parabolic band case see [23]). The ob-
tained results are rather encouraging regarding the accuracy of the model and the per-
formance of the numerical scheme. Here we investigate further the capability of the model
by extending the numerical scheme to the bidimensional case and simulating a silicon
MESFET.

2. THE MODEL

Here we give only a brief sketch of the model. For more details the interested reader is
referred to [1, 2].

In the model one assumes that the conduction band [27] is described around each mini-
mum (valley) by the Kane dispersion relation approximation

E(k)[1 + αE(k)] = h̄2k2

2m∗ , k ∈ R3, (1)

where E is the electron energy, α is the nonparabolicity parameter, m∗ is the effective
electron mass, h̄k is the crystal momentum, which is assumed to vary in all the space
R3, and h̄ is the Planck constant h divided by 2π . The values of α and the other phys-
ical parameters are reported in Table 1 in the Appendix. Concerning the collision
term, the most relevant interactions for silicon, that is, those between electrons and non-
polar optical phonons and acoustic phonons, have been taken into account. Electron–
electron scattering and scattering of electrons with ionized impurities are not considered
here.

The macroscopic balance equations are deduced by taking the moments of the Boltzmann
transport equation for electrons in semiconductors [12]; that is, by multiplying the transport
equation by weight functions ψ(k) and integrating over R3. If we consider the set of weight
functions 1, h̄k, E , and E v, we get the following macroscopic balance equations:

∂n

∂t
+ ∂(nV i )

∂xi
= 0, (2)

∂(n Pi )

∂t
+ ∂(nU i j )

∂x j
+ neEi = nCi

P , (3)
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∂(nW )

∂t
+ ∂(nS j )

∂x j
+ neVk Ek = nCW , (4)

∂(nSi )

∂t
+ ∂(nFi j )

∂x j
+ neE j G

i j = nCi
W . (5)

This system is coupled to Poisson’s equation,

E = −∇
, ε�
 = −e(nD − n A − n), (6)

where E represents the self-consistent electric field, 
 is the electric potential, e is the
elementary charge, nD and n A are the donor and acceptor densities, respectively, ε is the
dielectric constant, and n is the particle density. We consider the unipolar case and therefore
the hole concentration is not included.

The macroscopic quantities involved in the balance equations are related to the one-
particle distribution function of electrons f (x, t, k) as follows,

n =
∫
R3

f d3k is the electron density, (7)

V i = 1

n

∫
R3

f vi d3k is the average electron velocity, (8)

W = 1

n

∫
R3

E(k) f d3k is the average electron energy, (9)

Si = 1

n

∫
R3

f viE(k) d3k is the energy flux, (10)

Pi = 1

n

∫
R3

f h̄ki d3k = m∗(V i + 2αSi ) is the average crystal momentum, (11)

U i j = 1

n

∫
R3

f vi h̄k j d3k is the flux of crystal momentum, (12)

Gi j = 1

n

∫
R3

1

h̄
f

∂

∂k j
(Evi ) d3k, (13)

Fi j = 1

n

∫
R3

f viv jE(k) d3k is the flux of energy flux, (14)

Ci
P = 1

n

∫
R3

C[ f ]h̄ki d3k is the production of the crystal momentum balance equation,

(15)

CW = 1

n

∫
R3

C[ f ]E(k) d3k is the production of the energy balance equation, (16)

Ci
W = 1

n

∫
R3

C[ f ]viE(k) d3k is the production of the energy flux balance equation, (17)

where C[ f ] is the scattering term in the electron transport equation.
These moment equations do not constitute a set of closed relations because of the fluxes

and production terms. Therefore constitutive assumptions must be prescribed.
If we assume as fundamental variables n, V i , W , and Si , which have a direct physical

interpretation, the closure problem consists of expressing Pi , U i j , Fi j , and Gi j and the
moments of the collision term Ci

P , CW , and Ci
W as functions of n, V i , W , and Si .
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The maximum entropy principle (hereafter MEP) leads to a systematic way of obtaining
constitutive relations on the basis of information theory. According to the MEP, if some
moments MA are known, the distribution function fM E which can be used to evaluate the
unknown moments of f corresponds to the extremum of the entropy functional under the
constraint that it yields exactly the known moments MA; that is,∫

R3
ψA fM E d3k = MA, (18)

with ψA(k) the weight function entering into the definition of the moments MA. Once the
expression for fM E has been obtained, one gets the closure relations by evaluating the
expressions (7)–(17) with f = fM E .

This procedure, which fits into the framework of extended thermodynamics [16, 17] or
equivalently Levermore’s moment theory [18], has been used in [1, 2] upon the ansatz of
small anisotropy for fM E since Monte Carlo simulations for electron transport in Si show
that the anisotropy of f is small even far from equilibrium.

Formally a small anisotropy parameter δ was introduced and explicit constitutive equa-
tions were obtained for high-order fluxes [1] and for the production terms up to second
order in δ [2]. However, it was found in [7] that the first-order model is sufficiently accurate
for numerical applications and avoids some irregularities due to nonlinearities, as in the
parabolic band case [23]. A similar approach was followed in [24, 25], where the smallness
of the anisotropy was used to justify the truncation of the expansion of the distribution
function in spherical harmonics up to the harmonics of order zero and one.

Up to first order the constitutive equations for fluxes are of the form

Ui j = U (W )δi j , Fi j = F(W )δi j , Gi j = G(W )δi j . (19)

The explicit expressions of U (W ), F(W ), and G(W ) are given in [1, 2] and are reported
in the Appendix. Note that they depend only on W . In the parabolic band approximation
(α = 0) one finds

U P
i j = 2

3
Wδi j , m∗F P

i j = 10

9
W 2δi j , m∗Gi j = 5

3
Wδi j . (20)

We remark that in [1], instead of the variable Si , the vector Ni = ∫
R3 f h̄kiE(k) d3k was

introduced and therefore a different moment equation (5) was considered. The choice of
Ni was made by following [26] with the aim of comparing the MEP closure relations
with those reported in [26], obtained by the analysis of Monte Carlo data. Both the choice
are theoretically valid. However, in the simulations, the use of Si is more practical for
time-dependent simulations because one avoids the presence of a constitutive equation in
the vector of the conserved variable (see Section 3). Moreover Si has a direct physical
meaning.

The production term of the energy can be put in the form

CW = −W − W0

τW (W )
, (21)

where τW (W ) is the energy relaxation time. The expression of CW is given in the Appendix.
The term W0 represents the equilibrium energy 3

2 kB TL , with TL the lattice temperature.
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FIG. 1. Fluxes U, F, G, and energy relation time τW versus energy W (eV) for the Kane dispersion relation.
For comparison we have also plotted U, F, G in the case of the parabolic band approximation (dotted line) (see
Eqs. (20)).

The production terms of crystal momentum and energy flux can be written as

Ci
P = c11(W )Vi + c12(W )Si , (22)

Ci
W = c21(W )Vi + c22(W )Si . (23)

(For the expressions of the coefficients ci j (W ) see the Appendix.)
In Fig. 1 we plot U, F, G, and τW versus energy and in Fig. 2 we plot c11, c12, c21, and c22

versus energy in the case of Kane’s dispersion relation and in the parabolic approximation.
In the two-dimensional case the complete system of equations can be put into the equiva-

lent form, where Eq. (3) has been replaced with a linear combination with Eq. (5) by taking
into account the relation (11)

∂

∂t
F (0)(U) + ∂

∂x
F (1)(U) + ∂

∂y
F (2)(U) = B(U, E), (24)

Ex = −∂


∂x
, Ey = −∂


∂y
, (25)

ε

(
∂2


∂x2
+ ∂2


∂y2

)
= e(n − nD + n A), (26)
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FIG. 2. Coefficients ci j versus energy W (eV) for the Kane dispersion relation.

where

U =




n

V 1

V 2

W

S1

S2




, F (0) = n




1

m∗V 1

m∗V 2

W

S1

S2




, F (1) = n




V 1

(U − 2αm∗F)

0

S1

nF
0




,

F (2) = n




V 2

0
(U − 2αm∗F)

S2

0
nF




,

B = n




0
−eE1(1 − 2αm∗G) + (c11 − 2αm∗c21)V 1 + (c12 − 2αm∗c22)S1

−eE2(1 − 2αm∗G) + (c11 − 2αm∗c21)V 2 + (c12 − 2αm∗c22)S2

−e
∑2

k=1 V k Ek − W−W0
τW

−eE1G + c21V 1 + c22S1

−eE2G + c21V 2 + c22S2




.

As proved in [7], the system (24) is hyperbolic in the region n > 0, W ≥ W0.
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3. NUMERICAL METHOD

Numerical integration of quasi-linear hyperbolic systems represents by itself an active
research area (see [28, 29]). It is well known that the solutions of quasi-linear systems suffer
loss of regularity (e.g., formation of shocks). In the past decades several accurate high-order
shock capturing schemes have been developed. Most schemes are based on upwind methods
and require the solution to the Riemann problem. Unfortunately no analytical solution to the
Riemann problem for the model under investigation is available at the present time and an
approach based on the full numerical evaluation of the Roe matrix is not practical. Therefore
we have to resort to a central differencing scheme. The central schemes known in the
literature deal almost exclusively with homogeneous systems. In [5, 6] a suitable extension
for one-dimensional balance laws with (possibly stiff ) source terms has been developed on
the basis of the Nessyahu and Tadmor scheme [3] for homogeneous hyperbolic system. It has
been applied in [22, 23] to parabolic band hydrodynamical models of semiconductors. Here
we extend the scheme to the bidimensional case starting from the bidimensional version of
the Jiang and Tadmor scheme [4].

The complete method is based on a second-order splitting technique. This solves sepa-
rately the system with the source put equal to zero (convection step) and the flux put equal
to zero (relaxation step).

Each convective step has the form of a predictor–corrector scheme [4] on a staggered grid.
The scheme is second-order accurate in both time and space for homogeneous systems. If we
introduce a uniform grid (xi , y j ), with xi+1 − xi = �x = constant and yi+1 − yi = �y =
constant, and denote by �t = tn+1 − tn the time step, then the convective part of the scheme
reads

Un+1/2
i, j = Un

i, j − λ

2
F (1)′

xi, j
− µ

2
F (2)′

yi, j
, (27)

Un+1
i+1/2, j+1/2 = 1

4

(
Un

i, j + Un
i, j+1 + Un

i+1, j + Un
i+1, j+1

)
+ 1

16

(
U′

xi, j
− U′

xi+1, j

) − λ

2

[
F (1)

(
Un+1/2

i+1, j

) − F (1)
(
Un+1/2

i, j

)]
+ 1

16

(
U′

xi, j+1
− U′

xi+1, j+1

) − λ

2

[
F (1)

(
Un+1/2

i+1, j+1

) − F (1)
(
Un+1/2

i, j+1

)]
+ 1

16

(
U′

yi, j
− U′

yi, j+1

) − µ

2

[
F (2)

(
Un+1/2

i, j+1

) − F (2)
(
Un+1/2

i, j

)]
+ 1

16

(
U′

yi+1, j
− U′

yi+1, j+1

) − µ

2

[
F (2)

(
Un+1/2

i+1, j+1

) − F (2)
(
Un+1/2

i+1, j

)]
, (28)

where λ = �t/�x and µ = �t/�y denote the fixed-mesh ratios. The time step �t must
satisfy a suitable stability condition (see [4]) that ensures that the generalized Riemann
problems with piecewise smooth data at time tn will not interfere during the time step �t .

In order to couple the convection step with the relaxation step, it is convenient to make
two convection steps of step size �t/2, so that the solution is computed on the same grid. A
complete convection step is obtained as a sequence of two intermediate steps of time step
size �t/2.

The values of U′
xi, j

/�x and F ′
xi, j

/�x are first-order approximations of the partial deriva-
tives of the field and of the flux with respect to x . They are computed from cell averages by
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using a uniform nonoscillatory reconstruction [30],

U′
xi, j

= MM

(
dx

i− 1
2 , j

U + 1

2
MM

(
Dxi−1, j U, Dxi, j U

)
, dx

i+ 1
2 , j

U− 1

2
MM

(
Dxi, j U, Dxi+1, j U

))
,

(29)

where

Dxi, j U = Ui+1, j − 2Ui, j + Ui−1, j ,

dxi+1/2, j U = Ui+1, j − Ui, j

and

MM (x, y) =
{

sign(x) · min(|x |, |y|) if sign(x) = sign(y)

0 otherwise.

A similar procedure is used for evaluating F (1)
xi, j

. The computation of U′
yi, j

/�y and F (2)
yi, j

/�y
proceeds along similar lines.

The electric potential is calculated from the Poisson equation (26) with a standard pro-
cedure based on central differencing and by resorting to the conjugate gradient method to
solve the resulting linear system.

In the relaxation step one has to solve the following system of ordinary differential
equations (ODEs):

dn

dt
= 0,

dVk

dt
= −eEk

m∗ + 2αeEk G +
(

c11

m∗ − 2αc21

)
Vk +

(
c12

m∗ − 2αc22

)
Sk, k = 1, 2,

dW

dt
= −e

2∑
p=1

Vp E p − W − W0

τW
,

d Sk

dt
= −eEk G + c21Vk + c22Sk, k = 1, 2.

By freezing the energy relaxation time, the coefficients clp and G(W ), and the electric field
at t = tn , we can discretize these equations for each grid point (xi , y j ) in a semiimplicit
way as

nn+1
i, j − nn

i, j

�t
= 0,

V n+1
ki, j

− V n
ki, j

�t
= −eEn

k

m∗ + 2αeEn
k Gn +

(
cn

11

m∗ − 2αcn
21

)
V n+1

ki, j

+
(

cn
12

m∗ − 2αcn
22

)
Sn+1

ki, j
, k = 1, 2,

W n+1
i, j − W n

i, j

�t
= −e

2∑
p=1

V n
p En

p − W n+1
i, j − W0i, j

τ n
W

,
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Sn+1
ki, j

− Sn
ki, j

�t
= −eEn

k Gn + cn
21V n+1

ki, j
+ cn

22Sn+1
ki, j

, k = 1, 2,

which gives

nn+1
i, j = nn

i, j , (30)

V n+1
ki, j

= 1

δn

[(
1 − cn

22�t
)

dn
1k

+ dn
2k

�t

(
cn

12

m∗ − 2αcn
22

)]
, k = 1, 2, (31)

W n+1
i, j =

(
1 + �t

τ n
W

)−1
[

W n
i, j +

(
−e

2∑
p=1

En
p V n

p + W0i, j

τ n
W

)
�t

]
, (32)

Sn
ki, j

= 1

δn

{
cn

21dn
1k

�t + dn
2k

[
1 −

(
cn

11

m∗ − 2αcn
21

)
�t

]}
, k = 1, 2, (33)

where

δn = (1 − c22�t)

[
1 −

(
cn

11

m∗ − 2αcn
21

)
�t

]
− c21

(
cn

12

m∗ − 2αcn
22

)
(�t)2,

dn
1k

= V n
k +

(
−eEn

k

m∗ + 2αeEn
k Gn

)
�t, k = 1, 2,

dn
2k

= Sn
k − eEn

k Gn�t, k = 1, 2.

The simple splitting outlined above is only first-order accurate. In order to get a full
second-order scheme we combine the relaxation and convective steps in the same way
as proposed in [5, 6] for the one-dimensional case. Note that the analysis of the splitting
accuracy does not really depend on the dimension of the space. Given the fields U n and En

at time tn , the fields at time tn+1 are obtained using

U1 = R(Un, En, �t),

U2 = 3

2
Un − 1

2
U1,

U3 = R(U2, En, �t),

U4 = C(U3, �t),

En+1 = P(U4),

Un+1 = R(U4, En+1, �t/2),

whereR(V, E, �t) represents the discrete operator corresponding to the implicit relaxation
step (30)–(33) with initial condition V, constant in time electric field E, and time step �t ;
C(V, �t) is the discrete operator corresponding to the convective scheme (27)–(29) with
time step �t and initial condition V; and P(U ) gives the numerical solution to Poisson’s
equation.
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4. SIMULATION OF A SILICON MESFET

In this section we check the validity of our hydrodynamical model and the efficiency
of the numerical method by simulating a bidimensional metal semiconductor field effect
transistor (MESFET). The shape of the device is taken as rectangular and it is pictured in
Fig. 3.

The axes of the reference frame are chosen parallel to the edges of the device. We take
the dimensions of the MESFET to be such that the numerical domain is

� = [0, 0.6] × [0, 0.2],

where the unit length is the micron.
The regions of high-doping n+ are the subset

[0, 0.1] × [0.15, 0.2] ∪ [0.5, 0.6] × [0.15, 0.2].

The contacts at the source and drain are 0.1 µm wide and the contact at the gate is 0.2 µm
wide. The distance between the gate and the other two contacts is 0.1 µm. A uniform grid
of 96 points in the x direction and 32 points in the y direction is used. The same doping
concentration as used in [31–33] is considered,

nD(x) − n A(x) =
{

3 × 1017 cm−3 in the n+ regions

1017 cm−3 in the n region,

with abrupt junctions.
We denote by �D that part of ∂�, the boundary of �, which represents the source, gate,

and drain:

�D = {(x, y) : y = 0.2, 0 ≤ x ≤ 0.1, 0.2 ≤ x ≤ 0.4, 0.5 ≤ x ≤ 0.6}.

FIG. 3. Schematic representation of a bidimensional MESFET.
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FIG. 4. Stationary solution (after 5 ps) for the density for 
b = 1 V.

The other part of ∂� is labeled �N . The boundary conditions are assigned as follows:

n =
{

n+ at source and drain
ng at gate,

(34)


 =




0 at the source


g at the gate


b at the drain,

(35)
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{
W = W0, V · t = 0,

n · ∇(V · n) = 0, S = 5
3 W0V,

on �D, (36)

{
n · ∇n = 0, n · ∇W = 0, n · ∇
 = 0,

n · ∇V i = 0, S = 5
3 W V,

i = 1, 2 on �N . (37)

Here ∇ is the bidimensional gradient operator while n and t are the unit outward normal
vector and the unit tangent vector to ∂�, respectively. n+ is the doping concentration in the
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FIG. 5. Stationary solution (after 5 ps) for the energy density for 
b = 1 V.
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FIG. 6. Stationary solution (after 5 ps) for the x-component and y-component of the velocity for 
b = 1 V.

n+ region and ng is the density at the gate, which is considered to be a Schottky contact
[10]:

ng = 3.9 × 105 cm−3.


b is the bias voltage and 
g is the gate voltage. In all the simulations we set 
g = −0.8
while 
b varies.

In the standard hydrodynamical model considered in the literature (e.g., [20. 21]), the
energy flux S is not a field variable and it is not necessary to prescribe boundary conditions
for it. The relations (36)4 and (37)5 are not based on the microscopic boundary conditions
for the distribution function, but they may be justified in a heuristic way with the same
approach that was followed in [35].
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As in [35] we assume that along any interface or surface of a device, the projection of
the total energy flux onto the unit normal is a continuous function. In order to have a direct
physical meaning of the results, it is better to consider the expression of S in the parabolic
approximation (see [1]),

S = 5

2
kB T V + q, (38)

where T is the electron temperature defined by W = 3
2 kB T and q is the heat flux. In the

previous expression the second-order terms were neglected. By assuming for q a Fourier-like
form q = −κ∇T , if one does not take into account the contribution of the thermoelectric
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FIG. 7. Stationary solution (after 5 ps) for the energy-flux for 
b = 1 V.
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We start the simulation with the following initial conditions:

n(x, y, 0) = nD(x, y) − n A(x, y), W = W0 = 3

2
kB TL , V i = 0, Si = 0, i = 1, 2.

(40)

TL is the room temperature of 300 K.
The main numerical problems in this work arise from the discontinuous doping and

the boundary conditions at the Schottky barrier, which give rise there to sharp changes of
several orders of magnitude in the density. The use of a shock-capturing scheme is almost
mandatory for this problem.

In the first case we take 
b = 1 V. The stationary solution is reached in a few picoseconds
(less than 5). The code takes about 9 min and 10 s in a PC with a 1-GHz Pentium III
microprocessor. After the inital restless behavior the solution becomes smooth and no signs
of spurious oscillations are present. The numerical scheme seems suitably robust and is
able to capture the main features of the solution. Only the Kane dispersion relation is
considered here because the results obtained in the parabolic band approximation are rather
unsatisfactory when high electric fields are involved, as shown in [7] for a silicon n+–n–n+

diode. The model has given good results when compared with Monte Carlo simulation in
one-dimensional problems (see [9]). Unfortunately no Monte Carlo data are available to us
for bidimensional cases and therefore we can compare the results only with those obtained
by other hydrodynamical models.

The density is plotted in Fig. 4. As expected there is a depletion region beneath the gate.
Moreover, one can see that the drain is less populated than the source.

Concerning the energy (Fig. 5) there are sudden variations near the gate edges. The mean
energy of the electrons reaches a maximum value of about 0.35 eV in the part of the gate
closest to the source.
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FIG. 10. Stationary solution (after 5 ps) for the energy density for 
b = 2 V.

The results for the velocity are shown in Fig. 6. The higher values of the x-component
are at the edges of the gate contact. This happens also for the y-component, but with a huge
peak at the gate edge closest to the source. The behavior seems to indicate that there is a
loss of regularity at the edge of the gate.

The shape of the energy flux (Fig. 7) is qualitatively similar to that of the velocity.
Very large tangential and normal components of the electric field (Fig. 8) are present

again at the edges of the gate. For completeness the electric potential is also presented in
Fig. 9.

The results are qualitatively similar to those presented in [32, 33] for all the variables
except the y-component of the velocity, on account of the huge peak at the edge of the gate.
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As a second test we take 
b = 2 V. The code takes about 13 min and 30 s. The longer CPU
time with respect to the previous simulation is due to the more restrictive CFL condition.
There are not significant differences in the case of 
b = 1 V for density and electric field.
Concerning the other variables, the behavior of the solution is qualitatively similar to that
in the case of 
b = 1 V, but with higher values of the fields. The stationary solution for
energy, velocity, and energy flux is shown in Figs. 10–12.

If we compare our results with those obtained in [33], where the standard model [20, 21]
with relaxation times extracted from Monte Carlo data has been employed, one notes that
qualitatively the numerical solutions are very similar. There is some quantitative difference
in the peak of the energy, which is lower with our model, and the maximum values of the
y-component of the velocity, which are lower in the model presented in [33].
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TABLE 1

Values of the Physical Parameters Used for Silicon

me Electron rest mass 9.1095 × 10−28 g
m∗ Effective electron mass 0.32 me

TL Lattice temperature 300 K
ρ Density 2.33 g/cm3

vs Longitudinal sound speed 9.18 × 105 cm/s
�d Acoustic-phonon deformation potential 9 eV
α Nonparabolicity factor 0.5 eV−1

εr Relative dielectric constant 11.7
ε0 Vacuum dieletric constant 8.85 × 10−18 C/V µm

F = 2

3m∗d0

∫ ∞

0
exp

(−λW (0)E
)E[E(1 + αE)]3/2

1 + 2αE dE, (43)

G = 1

nm∗d0

∫ ∞

0
exp

(−λW (0)E
)[

1 + 2(1 + αE)

3(1 + 2αE)2

]
E3/2

√
1 + αE dE . (44)

λW (0)(W ) is the expression of the Lagrangian multipliers relative to the energy up to first
order in δ (see [1]). It depends only on W and it is obtained by inverting the relation

W =
∫ ∞

0 E
√
E(1 + αE)(1 + 2αE) exp

(−λW (0)E
)
dE∫ ∞

0

√
E(1 + αE)(1 + 2αE) exp

(−λW (0)E
)

dE
.

Note that U , F , and G depend only on W as a consequence of the fact that λW (0) is a function
of W alone.

The production terms are the sum of the term due to the elastic scatterings (acoustic
phonon scattering) and of that due to inelastic phonon scatterings. Therefore the production
matrix C = (ci j ) is given by the sum C = C (ac) + C (np).

Concerning the acoustic phonon scattering, the contribution to the energy balance equa-
tion is zero while the production matrix C (ac) = (c(ac)

i j ) can be written as C (ac) = A(ac) B.
The coefficients bi j of the matrix B are given by

b11 = a22

�
, b12 = −a12

�
, b22 = a11

�

with

a11 = − 2p0

3m∗d0
, a12 = − 2p1

3m∗d0
, a22 = − 2p2

3m∗d0
, � = a11a22 − a2

12,

dk =
∫ ∞

0
Ek

√
E(1 + αE)(1 + 2αE) exp

(−λW (0)E
)

dE, k = 0, 1, . . . ,

pk =
∫ ∞

0

[E(1 + αE)]3/2Ek

1 + 2αE exp
(−λW (0)E

)
dE, k = 0, 1, . . . .

The coefficients of the matrix A(ac) read

a(ac)
11 = K̄ ac

d0

∫ ∞

0
E2(1 + αE)2(1 + 2αE) exp

(−λW (0)E
)

dE, (45)
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a(ac)
12 = K̄ ac

d0

∫ ∞

0
E3(1 + αE)2(1 + 2αE) exp

(−λW (0)E
)

dE, (46)

a(ac)
21 = K̄ ac

m∗d0

∫ ∞

0
E3(1 + αE)2 exp

(−λW (0)E
)

dE, (47)

a(ac)
22 = K̄ ac

m∗d0

∫ ∞

0
E4(1 + αE)2 exp

(−λW (0)E
)

dE, (48)

where

K̄ ac = 8π
√

2(m∗)3/2 Kac

3h̄3 , Kac = kB TL�2
d

4π2h̄ρv2
s

.

Concerning the nonpolar phonon scattering the production term of the energy balance
equation is given by CW = ∑6

A=1 CWA , where for each valley

CWA = 3

2

K̄ np

d0

∑
±

(
nB + 1

2
∓ 1

2

)[
exp

(
± h̄ωnp

kB TL
∓ λW (0)h̄ωnp

)
− 1

]
η±, (49)

with

η± =
∫ ∞

h̄ωnp H(1∓1)

EN±
√
E(1 + αE)(1 + 2αE) exp

(−λW (0)E) dE, (50)

N± = √
(E ± h̄ωnp)[1 + α(E ± h̄ωnp)][1 + 2α(E ± h̄ωnp)], (51)

and

K̄ np = 8π
√

2(m∗)3/2 Knp

3h̄3 , Knp = Z f
(Dt K )2

8π2ρωnp
.

H is the Heaviside function

H(x) =
{

1 if x > 0
0 otherwise.

The coefficients of the production matrix C (np) = (c(np)
i j ) are given by c(np)

i j = ∑6
A=1 c(np)

Ai j
.

For each valley one has C (np) = A(np) B, where the matrix A(np) has components

a(np)
11 = K̄ np

d0

∑
±

(
nB + 1

2
∓ 1

2

) ∫ ∞

h̄ωnp H(1∓1)

N±E3/2(1 + αE)3/2 exp
(−λW (0)E

)
dE,

(52)

a(np)
12 = K̄ np

d0

∑
±

(
nB + 1

2
∓ 1

2

) ∫ ∞

h̄ωnp H(1∓1)

N±E5/2(1 + αE)3/2 exp
(−λW (0)E

)
dE,

(53)

a(np)
21 = K̄ np

m∗d0

∑
±

(
nB + 1

2
∓ 1

2

) ∫ ∞

h̄ωnp H(1∓1)

N±
E5/2(1 + αE)3/2

1 + 2αE exp
(−λW (0)E

)
dE,

(54)

a(np)
22 = K̄ np

m∗d0

∑
±

(
nB + 1

2
∓ 1

2

) ∫ ∞

h̄ωnp H(1∓1)

N±
E7/2(1 + αE)3/2

1 + 2αE exp
(−λW (0)E

)
dE .

(55)
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TABLE 2

Coupling Constants and Phonon Energies

for Inelastic Scattering in Silicon

A Z f h̄ω (meV) Dt K (108 eV/cm)

1 1 12 0.5
2 1 18.5 0.8
3 4 19.0 0.3
4 4 47.4 2.0
5 1 61.2 11
6 4 59.0 2.0

The coupling constants and the values of the energy phonons for each valley are reported
in Table 2 [34].

In order to speed up the computation, in the numerical code we do not evaluate U , F ,
G, τW , and the coefficients ci j at each time step by using the above formulas. Instead we
calculate in advance a numerical table of the variables as functions of the energy W and
during the simulation we determine particular values by interpolation.
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